
Types of Storage

I amount of water released from porous media due to
unit drop in hydraulic head

I Storativity (S)[unitless]
I confined aquifer
I based on unit area (column of aquifer)

I Specific Storativity (Ss) [L−1]
I confined aquifer
I based on unit volume

I Specific Yield (Sy) [unitless]
I unconfined aquifer
I based on unit area
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Sources of stored water

I Where does water flowing into a well come from the
instant pumping starts?

I water released from an aquifer can come from
several sources:

I drainage, Specific Yield
I expansion or compression of the aquifer materials (α)
I expansion of water (β)

I as well is pumped, water is replace by inflow and
storage decreases in importance
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Figure: Effective stress and water pressure balance the total
stress exerted on an aquifer.
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If the total stress (σT ) on an aquifer is constant then:

∆σe = −∆P = −ρg∆h

If water is pumped into an aquifer, the water pressure
increases and the effective stress on the aquifer media
decreases.

∆VH2O ∝ ∆P

∆VH2O ∝ −∆σe

∆VH2O = ∆VP − ∆Vaqfr
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aquifer and water compressibility

β =

−∆VH2O

VH2O

∆P
=

∆ρH2O

ρH2O

∆P

α =

−∆Vaqfr
Vaqfr

∆σe

Combining these equations:

∆VH2O = (−αVaqfr∆σe) + (βVH2O∆P)
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∆VH2O

Vaqfr∆h
= αρg + β

VH2O

Vaqfr
ρg

∆σe = −∆P = −ρg∆h

Ss = ρg(α+ nβ)
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Specific Yield

I unconfined aquifer
I gravity drainage >> expansion/compression of

water/aquifer
I specific yield typically similar to porosity of aquifer

material
I in some materials, water held in pore spaces not

easily drained (eg. clay)
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Implications of aquifer storage

I Tidal Oscillations
I Barometric oscillations

BE =
ρg∆h
∆Patm

I landslides (decrease in σe)
I subsidence
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Barometric Oscillations

BE =
ρg∆h
∆Patm

=
n · β

α+ n · β
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Tidal Oscillations
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blue=Bayside well water level, green=Portland predicted tide level
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Tidal Oscillations

I Tidal Efficiency
I T .E. = ∆hwell

∆hocean
= α
α+n·β

I Usually can’t measure true T.E., no well in ocean

I Lag = x
√
π·Ss
t0·K

, TEapp = TEtrueexp
(

Lag·2π
t0

)
I Ss =

n·β·ρ·g
1−TEtrue

I Need to convert ocean levels to fresh-water heads

t0 is period of fluctuation
Carr and Van Der Kamp, 1969, Determining Aquifer characteristics by the tidal method. Water Resources

Research 5:1023-1031.
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Tully, NY Landslide
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Tully, NY Landslide

I Heads in sand units higher than normal
I Above normal rain
I Thicker snow pack, more meltwater

I High pressure head exceeded total stress
USGS Fact Sheet 190-99. History of Landslides at the Base of Bare Mountain, Tully Valley, Onondaga
County, New York
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Storage and Groundwater Flow Equation

I Previously developed: 0 = ∂
∂x

(
K ∂h
∂x

)
±W

I Assumed Steady State
I If Transient, need to consider storage
I Change in specific discharge in 1-D unit cell:

qfront − qback

∆x
= −Ss

h(t2) − h(t1)

∆t
∂

∂x

(
K
∂h
∂x

)
= Ss

∂h
∂t
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Flow to a Well

I When a well is pumped, initially have transient
conditions

I Approaches steady-state conditions with time
I Pumping wells produce a radial flow pattern
I Radial flow in homogeneous, isotropic setting

reduced to 1-D system
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Radial Flow Equation

b

r

I Let ∆r be small.
I Area at top of ’donut’: 2 · π · r · ∆r
I Area of outer edge of ’donut’: 2 · π · r · b
I What is discharge across outer edge?
I Q = −K · 2 · π · r · b dh

dr
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Radial Flow Equation

b

r

I What is radial groundwater flow equation?
I Set up mass balance Qfront − Qback = ∆Storage
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Radial Flow Equation

r

∆Q
∆r

= 0

∆(2Kbr dh
dr )

∆r
= 0

d
dr

(
2Kb

rdh
dr

)
= 0

I Assume steady state
I Based on graph, simplify diff. in fluxes to diff. eq.
I Apply product rule, and simplify.
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Radial Flow Equation

I Add storage term
I General groundwater flow in radial coordinates:

Ss
∂h
∂t

= K · ∂
2h
∂r2 + K · 1

r
∂h
∂r
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Thiem Equation

I Solve steady state flow eqn.: Q = 2 · π · r · b · K dh
dr

I h2 − h1 = Q
2πT ln

(
r2
r1

)
I H2 = Q

2πT ln(r2) + C (if r1 and h1 fixed)
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Superposition

I Can add solutions to linear diff. eq. together
I If have two pumping wells, add two thiem eqns.

together
I h = Q1

2πT ln(r1) +
Q2
2πT ln(r2) + C

I Can combine with other solutions, pumping well in
regional gradient

I h = Q1
2πT ln(r1) + dh

dx · x + dh
dy · y + C
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Unconfined flow to a Well

I Not linear (no superposition)

I h2
2 − h2

1 = Q
πK ln

(
r2
r1

)
I with recharge:

I h2
2 − h2

1 = Q
πK ln

(
r2
r1

)
+ W

2·K
(
r2
1 − r2

2

)

Hydrogeology (ERS 580) Dept. of Earth Sciences, University of Maine



Transient Flow to a Well

I Ss
∂h
∂t = K · ∂2h

∂r2 + K · 1
r
∂h
∂r

I Solve based on many assumption:
I Homogeneous, Isotropic aquifer
I Infinite extent
I No recharge
I Constant pumping rate
I Fully penetrating well
I Confined aquifer

ht=0 − hr ,t =
Q

4πT

∫∞
u

e−u

u
du =

Q
4πT

W (u)

u =
r2S
4Tt
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Transient Flow to a Well

finding W(u)
I look-up table
I W (u) = −.5772 − ln(u) + u − u2

2·2! +
u3

3·3! · · ·
I Analytic solution (Srivastava and Guzman-Guzman, 1998, Ground Water (36)844)

I if u > 1:
I a1 = u + 0.3575
I a2 = (u · exp(u))(u + 1.280)
I W (u) = a1

a2
I otherwise:

I C1 = exp(−.577216)
I W = ln(C1

u ) + 0.9653 · u − 0.1690 · u2

I Numerical integration
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